Collaborative Knowledge Acquisition under
Control of a Non-Regression Test System

Gérome Canals 123, Amélie Cordier*®, Emmanuel Desmontils®,
Laura Infante-Blanco'??, and Emmanuel Nauer!?3

! Université de Lorraine, LORIA, UMR 7503, 54506 Vandoceuvre-les-Nancy, France,
2 CNRS - 54506 Vandceuvre-les-Nancy, France,
3 Inria — Villers-lés-Nancy, F-54602, France
4 Université de Lyon, CNRS
5 Université Lyon 1, LIRIS, UMR 5205, F-69622, Lyon, France
6 LINA Université de Nantes, 2 rue de la Houssiniere BP92208,
F-44300 Nantes Cedex 3, France
{Gerome.Canals,Emmanuel .Nauer, Laura.InfanteBlanco}@loria.fr
Amelie.Cordier@liris.cnrs.fr,Emmanuel.Desmontils@univ-nantes.fr

Abstract. This paper introduces BEGOOOD, a generic system for man-
aging non-regression tests on knowledge-bases. BEGOOOD is a system al-
lowing to define test plans in order to monitor the evolution of knowledge-
bases. Any system answering queries by providing results in the form of
set of strings can be tested with BEGOOOD. BEGOOOD has been devel-
oped following a REST architecture and is independent of any applica-
tion domain. This paper describes the architecture of the system and
gives a use case to illustrate how BEGOOOD is able to manage a collab-
orative knowledge evolution in the framework of a case-based reasoning
system.

1 Introduction

In knowledge-based systems, making evolve knowledge sources is a difficult task,
for many reasons. One of the difficulties is to make sure that, when adding
knowledge, or modifying existing knowledge, one must not jeopardize the results
produced by the system. Therefore, one way to assess the impact of a change in
a knowledge-base is to evaluate the impact of this change in the results of the
system.

In this paper, we describe BEGOOOD, a generic system for managing non-
regression tests on knowledge-bases. The system provides us with all the features
usually found in test systems, such as assertions, test plans, test reports, etc.
Although generic, BEGOOOD has been initially developed to test ontologies in
distributed systems.

The paper is organized as follows. Section 2 presents the motivation for this
work. Section 3 reviews related work on ontology management and test systems.
Section 4 describes the BEGOOOD system, its architecture and its data model. To
illustrate how the system works and is able to manage a collaborative knowledge
evolution, section 5 details an example of use case. Lastly, section 6 concludes
this paper and discusses future work.

2 G. Canals, A. Cordier, E. Desmontils, L. Infante-Blanco, E. Nauer

2 Context and motivations

The motivation to develop this system came from the KOLFLOW project'. The
aim of this project is to develop distributed web environments enabling humans
and artificial agents to collaborate in order to build knowledge used by both
humans and artificial agents. Therefore, distributed knowledge bases are at the
heart of KOLFLOW. These knowledge bases are continuously modified and, as a
consequence, conflicts arise quickly. Therefore, procedures have to be defined in
order to monitor and handle conflicts. In a previous work [13], we have proposed
an architecture called K-CIP (Knowledge Continuous Integration Process) for
managing knowledge bases integration. The corner stone of K-CIP is the notion
of test. Indeed, the whole process is controlled by tests, and the transition from
one state to the next one is determined by the results of the tests. This paper
describes the test framework required for implementing K-CIP.

One of the use case of the KOLFLOW project was to manage cooking knowl-
edge bases used by a Case-Based Reasoning (CBR) system called TAAABLE [5].
With this system, we had to face ontology evolution problems. For example,
TAAABLE used return good results when queried for tomato salad recipes because
tomatoes were defined in the ontology as vegetables. But if someone changes the
ontology to state that tomatoes are fruits, instead of vegetables, TAAABLE then
provides strange results when asked for tomato salad recipes again (e.g. fruit
salad recipes). We had to find a way to handle this type of problems. This
example is detailed in section 5.

Goals and needs of the KOLFLOW project have guided design choices for
BEGOOOD, but we have decided to implement it as a generic framework for
facilitating its reuse in other contexts. BEGOOOD is generic in two ways: it is
domain independent, and it has a REST architecture. The system can test any
application that, in response to a query, returns a set of results in the form of
strings. Besides, the architecture of BEGOOOD complies with the requirements
of REST, which makes the system easy to connect with any web-based applica-
tion. Hence, BEGOOOD is a suitable tool for ontology engineering and ontology
management in distributed environments, such as in KOLFLOW.

3 State of the art

Social semantic web [12,9,10] opens interesting perspectives for man-machine
collaboration [11, 16]. It creates interactive spaces where users and smart agents
can collaborate to improve and maintain knowledge exploitable by humans and
machines. Humans can build resources assisted with smart agents that gather
information from linked data [4]. The engineering of ontologies is a central con-
cern in knowledge engineering in social semantic web domain. Many tools have
been proposed to improve development of ontologies. Most of these tools (such

! http://kolflow.univ-nantes.fr

Collaborative Knowledge Acquisition through Tests 3

as Protégé?) are designed for centralized usage without social collaboration pro-
cess. However, some collaborative approaches have been proposed: Coy [6], DILI-
GENT [15], OntoWiki [1], etc. These expert team based tools, often centralized,
are not convenient in the social web context, with an unstructured network and
without an identified expert team. In this context, quality issues turn out to be
of critical importance [3]. Beyond the ”logical quality”, [3] highlights the im-
portance of usefulness of knowledge. For Baumeister and Nalepa, this criteria
is difficult to measure and social methods can help to cope this problem. To
achieve this aim, collecting user satisfaction by collecting its feedback seems to
be a good solution. The goal of the K-CIP approach [13] is to provide such
features focusing on ontology engineering in a social and distributed context.
BEGOOOD, presented in this paper, aim to implement the knowledge unit tests
part of K-CIP.

For that, we draw inspiration from continuous integration and agile program-
ming, using software engineering methods. Continuous Integration process [8] is
an agile software engineering process aiming at shortening the integration of soft-
ware. The principle is to allow the developer to make many small updates (and
this is even recommended). Each update is subject to a set of unit tests then
this update is integrated into the whole software. Next, one or more phase(s)
of integration tests (according to their time cost) is/are processed to ensure the
consistent development of the software. A notification system allows the devel-
oper to know the state of integration. In case of failure, he/she is quickly notified
so that corrections can be quickly made.

Such a process can be applied to knowledge building in collaborative and dis-
tributive contexts. In ontology engineering, unit tests can be applied at different
levels [14] :

1. affirming derived knowledge defining a positive test ontology containing ax-
ioms that must be derivable by the ontology and a negative test ontology
with axioms that must not be derivable,

2. formalized competency questions always formalized in a query language and
associated with a set of expected answers that the system uses to check if
the ontology meets the requirements stated,

3. expressive consistency checks with a secondary ontology which, included to
the usable one, allows knowledge managers to perform consistency checks,

4. auto-epistemic operators to guarantee the completeness useful to check an
ontology not only with regards to its consistent usage, but also with regards
to some explicitly defined understanding of completeness,

5. constraints to control the usage of resources with the use of domain and range
not to classify the subject or the object but to implement these constraints.

We propose BEGOOOD as a generic Web service solution to the second level
useful not for the maintenance of the system, but rather for its initial build [14].
Note that our web service can also be used to implement the first level. In fact,

2 The Protégé Ontology Editor and Knowledge Acquisition System: http://protege.
stanford.edu/

4 G. Canals, A. Cordier, E. Desmontils, L. Infante-Blanco, E. Nauer

BeGooob

Query | Sets of evaluated answsers

- h
URIq Q .ll . Assertion

Tested Sy ‘/

T > '4}(‘ — 0|< or FAILED

A system
returning answsers

system

Assemon evaluation

Fig. 1. Link between BEGOOOD and the system that has to be tested.

some positive and negative axioms can be expressed by queries (like with the
“ask” sentence in SPARQL) or by positive and negative answers of a test. Protégé
Ontology Editor Plug-In called OWL Unit Test Framework?® is also a generic
software for knowledge based unit tests, but is dedicated to the first level. From a
technical point of view, our approach is largely inspired by xUnit test frameworks
for software development, like JUnit.*. In particular, BEGOOOD assertions and
the BEGOOOD assertion evaluation engine are very close to assertions that can
be expressed and evaluated with the DBUnit framework.? The main difference
with these frameworks is that we do not have test fixtures, since our purpose is
to test the behavior of a system and its current state. Setting up a well defined
state of the system for testing it is thus just not useful.
In the next section, we presents the BEGOOOD generic web service.

4 BeGoood: a generic system for managing non-regression
tests

BEGOOOD addresses the evaluation of various kind of systems, including case-
based reasoning systems (e.g. TAAABLE), information retrieval systems (like it
is done in the TRECS evaluations), etc. The idea is to evaluate the quality of
a system, according to the set of answers A it returns for a query @, and the
evaluation consists in comparing A with the set of answers that are known to be
relevant for @), denoted by Ap (for positive answers), the set of answers that are
known to be non relevant for @), denoted by An (for negative answers), and the
set of answers that have already be returned for @), without knowing if they are
relevant or not, denoted by Aw (for undefined answers).

3 http://www.co-ode.org/downloads/owlunittest/
4 http://junit.org/

5 http://www.dbunit.org/

S http://trec.nist.gov

Collaborative Knowledge Acquisition through Tests 5

R rt
uri-(rapo e
1.1 0.n 0.n 1.1 uri-
exec-date pieduGes P
label-p
content
stop-mod
result
Test
uri-t o
0.n 11 |[labelt | 11 " [isComposedOf
status-t order
q T —
uri-q
label-q
Answer Asserthn
T 11 Ln] uses concerns | 0.n 1.1 [uri-assertion
status-u label
answer-value S S
— code

Fig. 2. Data Model.

Fig. 1 presents how BEGOOOD can be plugged to a system that has to be
tested. BEGOOOD stores a set of assertions. An assertion is linked to a query
@, than can be run again thanks to its URI uri—q and to the Ap, An, and Au
sets. When the system must be tested, assertions are evaluated thanks to Ap,
An, Au, and T, the answers resulting from a new execution of Q.

4.1 Non-regression test model

The objective of a test is to prove that the answers to a query satisfy a set of
assertions. In order to evaluate the behavior of a system, a test plan, composed
of a sets of tests, is executed and a report is produced. Fig. 2 introduces the
data model used in BEGOOOD for managing such a testing system.

Test. A test is identified by an URI (uri—t). A label describes its goal and its
status indicates if it is active or not. A test is associated to a query, identified
by an URI (uri — ¢), which allows to run the query again, and a label gives a
short textual explanation about the semantic of the query.

Answer. An answer is identified by an URI (uri—a). As BEGOOOD wants to be
a generic testing system, an answer (answer—uvalue) is considered to be a string.
Answers and tests are linked in order to get the Ap, An, and Au sets. An answer
whose status (status—u) is p (resp. n and u) belongs to Ap (resp. An and Au).

6 G. Canals, A. Cordier, E. Desmontils, L. Infante-Blanco, E. Nauer

Assertions. Assertions are logical expressions, and we choose to encode them in
XML. An assertion is identified by an URI (uri — assertion) which allows to
use it into different tests, a label which is a short textual explanation about the
semantic of the assertion and an XML code. Figure 3 describes the DTD schema
of assertions in XML. An assertion handles two types of sets:

— the sets of answers resulting from the construction of the test: Ap, An, Au,
and A = ApU An U Au, and

— the sets of answers obtained during the application of the test: T' is the
set of all returned answers, T'p denotes the subset of positive answers of T’
(T'p = TNAp), Tn denotes the subset of negative answers of T (Tn = TNAn),
Tu denotes the subset of undefined answers of T (Tu =T \ TpU Tn).

An assertion is a logical expression which handles sets (Ap, An, Au, A, T,
Tp, Tn, Tu and 0), set operators (union, intersect, equal, card, etc.), numbers
(for cardinality constraints) and standard number operators.

Involving only the sets mentioned above, assertions are totally independent of
the application and of the type of answers. Assertions are used both to determine
a property of a test and serves to evaluate this property. In the first case, only
the sets Ap, An, Au and A will be used. To evaluate a test, an assertion have
to be composed of sets from the test (Ap, An, Au and A) and from the query
results (T, Tp, Tn and Tu). For instance, a test called “a majority of positive
answers” can be defined by |Tp| > 2.|Tn| (see Fig. 4). Similarly, a successful test
like “all positive known answers” can be defined by the statement ApNT = Ap
(see Fig. 5).

Plan. A plan is identified by an URI (uri—p). A label describes its objective.
A plan is composed of a set of tests which can be ordered. A stop condition
(stop—mod) can be defined for a plan. With stop—mod=true, the plan will be
stopped once the first test fails, without evaluating the other tests belonging to
the plan.

Report. A report is generated after a test was run. The report is identified by an
URI (uri—r), the date and time of its execution, and the results of the test(s). A
report can be generated by a single test execution or by a plan execution. In this
case, the result is built by concatenation of the reports of the tests composing
the plan. Section 5.2 shows examples of report.

4.2 BeGoood advantages

One of the strengths of BEGOOOD is its independence from the application
domain, the knowledge representation method and even the method used to
manage knowledge. Indeed, a test is nothing more than a string submitted to
the standard REST[7] client application. In addition, this one returns a set of
answers as strings.

The only constraint to the response format is that it has to be canonical,
i.e. there must be correspondence between the string that represents the answer

Collaborative Knowledge Acquisition through Tests

<IENTITY % logic-assert "(and | or | mnot)" >

<!ENTITY % num-comp "(eq | 1t | gt | ge | le | neq)" >

<!ENTITY % set "(Ap | An | Au | A | Tp | Tn | Tu | T | Empty-set)" >

<IENTITY % set-comp "(eq-set | negq-set " >

<!ENTITY % set-cons "(union | intersect | minus | %set;)" >

<!ENTITY % num-op "(card | plus | dif | times | divide | number)" >

<!-- The root -->

<!ELEMENT assertion (%logic-assert; |%num-comp;|%set-comp;) >

<!-- Logic operators -->

<!ELEMENT and ((%logic-assert; |%num-comp; |%set-comp;),
(%logic-assert; | %4num-comp; | %set-comp;)) >

<!ELEMENT or ((%logic-assert; |%num-comp;|%set-comp;),
(%logic-assert; | %num-comp; | %set-comp;)) >

<!ELEMENT not (%logic-assert;|%num-comp; |%set-comp;) >

<!-- Set operators -->

<!ELEMENT union (%set-comns;, Jset-cons;) >

<!ELEMENT intersect (Yset-cons;, %set-coms;) >

<!ELEMENT minus (%set-cons;, %set-cons;) >

<!ELEMENT card (%set-cons;) >

<!l-- Set comparison -->

<!ELEMENT eq-set (Yset-cons;, %set-cons;) >

<!ELEMENT neq-set (}set-cons;, ’set-cons;) >

<!-- Numeric comparison -->

<!ELEMENT eq (%num-op;, %num-op;) >

<!ELEMENT neq (%num-op;, %num-op;) >

<!ELEMENT 1t (%num-op;, %num-op;)

<!ELEMENT gt (%num-op;, %num-op;)

<!ELEMENT ge (Ynum-op;, %num-op;)

<!ELEMENT le (%num-op;, %num-op;)

<!-- Numeric operators -->

<!ELEMENT plus (%num-op;, %num-op;) >

<!ELEMENT dif (Y%num-op;, %num-op;) >

<!ELEMENT times (%num-op;, %num-op;) >

<!ELEMENT divide (%num-op;, %num-op;) >

vV V V VvV

<!-- Numeric value -->
<!ELEMENT number (#PCDATA) >
<!-- Set values -->

<!ELEMENT Ap EMPTY >
<!ELEMENT An EMPTY >
<!ELEMENT Au EMPTY >
<!ELEMENT A EMPTY >
<!ELEMENT Tp EMPTY >
<!ELEMENT Tn EMPTY >
<!ELEMENT Tu EMPTY >
<!ELEMENT T EMPTY >
<!ELEMENT Empty-set EMPTY >

Fig. 3. assertion-en.dtd, the DTD schema to encode assertions in XML.

8 G. Canals, A. Cordier, E. Desmontils, L. Infante-Blanco, E. Nauer

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE assertion SYSTEM "assertion-en.dtd">
<assertion>
<gt><card><Tp/></card>
<times><number>2<number><card><Tn/></card></times>
</gt>
</assertion>

Fig. 4. XML encoding of the assertion “a majority of positive answers”, i.e. |Tp| >
2.|Tn|.

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE assertion SYSTEM "assertion-en.dtd">
<assertion>
<eg><inter><Ap/><T/></inter>
<T/>
</eq>
</assertion>

Fig. 5. XML encoding of the assertion “all positive known answers”, i.e. ApNT = Ap.

and the answer itself and that, whatever the context, this string is unique. This
ensures the ability to compare answers using a single string comparison.

Another genericity factor of our system is the generic construction of asser-
tions. Indeed, they are described with an XML structure whose elements do not
depend on the application (Fig. 3).

To use BEGOOOD, the tested system must only provide an URI access for
being requested. All tests, assertions and answers are identified by an URI.
Therefore, the same test can be used by several parallel applications. BEGOOOD
is ready to manage ontology’s engineering in a distributed environment.

4.3 Implementation

The BEGOOOD test application is implemented as a web service and is available
under a AGPL license on github”. The different functions are available through
a RESTful API. The general architecture of BEGOOOD is depicted in Fig. 6.
The main components of the application are:

the test database that stores every test artifacts : tests and test plans, associ-
ated queries, assertions, expected result sets and test reports. Every database
artifact is a REST resource that can be managed through the API using the
classical CRUD (Create, Retrieve, Update, Delete) operations.

" https://github.com/kolflow/begoood

Collaborative Knowledge Acquisition through Tests 9

tested syste

44 —_— remote query

——— | evaluator

assertion
engine

REST | TEST ™
APl |controller

Test
Client

Fig. 6. Architecture of BEGOOOD.

the remote query evaluator is in charge of evaluating test queries on the

tested system. Queries are seen by the test application as simple URIs. Thus
the evaluation of a remote query simply consists in submitting a GET request
on the URI. This means that the tested system is assumed to provide a web
interface for query evaluation. If it is not the case, a query wrapper must
be implemented. The remote query evaluator then collects the query result
returned by the tested system and makes it available to the assertion engine.

the assertion engine is in charge of evaluating assertions over the expected

and effective query result sets. It does so by querying the local database and
evaluating basic logical set operators.

the REST API offers the test functionalities as web services. Every resource in

the database can be created/retrieved /updated and delete through this API.
A particular resource, associated to every test and test plan, is used to create
and execute tests runs. Runs are orchestrated by the TEST controller.
Each test in a plan is executed according to the plan definition. A test plan
report is generated and made available as a resource through the API.

the test client is a simple programming interface to build test clients. It pro-

vides a more convenient way of interacting with the BEGOOOD web service
rather than directly writing REST request and decoding JSON data in the
REST response.

10 G. Canals, A. Cordier, E. Desmontils, L. Infante-Blanco, E. Nauer

/FOOd
e k\
Lettuce Onion Redpem - Apple ApplePie Orange Kiwi

Fig. 7. An excerpt of the domain knowledge.

Id| Title | idx(R;)

Ri| Rice salad SaladDish N\ RedPepper N\ Shrimp N\ Rice N Mayo
Ro|Summer salad|SaladDish A Lettuce A Onion A Ham A OliveOil A\ Vinegar
Rs3| Special one SaladDish A Onion N\ RedPepper N\ SaladSauce

R4| Fruit salad SaladDish N\ ApplePie N\ Kiwi A\ Orange

Rs| Fresh salad SaladDish N\ ApplePie N\ Apple

Table 1. Five examples of recipes and their indexes.

5 Use case: adapting cooking recipes

This section presents a use case, in the framework of the TAAABLE® application,
a CBR cooking system. The TAAABLE principles are first presented. Then, an
illustrative example is given for showing how BEGOOOD is able to manage a
knowledge modification to guarantee the correct behaviour of TAAABLE.

5.1 TAAABLE principles

TAAABLE is a CBR system which retrieves and creates cooking recipes by adap-
tation [2]; it was developed to participate in the Computer Cooking Contest.”
TAAABLE uses a set of knowledge which is encoded in a Semantic Wiki, called
WIKITAAABLE [5]. WIKITAAABLE contains an ontology of the cooking domain
which is used to search the source cases that are the most similar to a target
case (i.e. the query). This ontology includes several hierarchies (about food, dish
types, etc.). An excerpt of the food hierarchy is illustrated in Fig. 7.

The case base is composed of recipes. Each recipe R is represented by idz(R),
the index of the recipe R which is a conjunction of literals from the domain
ontology. Five recipes are given in the example in Table 1. idz(R;) is an abstract
formal representation of the recipe R;, a salad dish whose ingredients are red
pepper, shrimp, rice and mayo (and nothing else).

8 http://taaable.fr/
9 http://computercookingcontest .net

Collaborative Knowledge Acquisition through Tests 11

Retrieval and adaptation process. According to a query entered in the sys-
tem by a user, and also represented by a conjunction of concepts, the system
searches in the case base for some cases (recipes) satisfying the query. For ex-
ample, QQ = SaladDish N Tomato represents the query “I would like a recipe of
salad dish with tomato.” Recipes matching exactly the query, if they exist, are
returned to the user; if not, the system searches for similar recipes, using the hi-
erarchies to generalize the user query. Adaptation consists in substituting some
ingredients of the source cases by the ones required by the user, and is encoded
by a substitution R|A->B, meaning that “in recipe R, A has to be substituted
by B”. For this example, the results provided by TAAABLE for @) are:

R1|RedPepper->Tomato
R2|Lettuce->Tomato or Onion->Tomato
R3|Onion->Tomato or RedPepper->Tomato

5.2 Using BEGOOOD to test the TAAABLE system

Suppose that a user modifies the food hierarchy by removing that tomato is
a vegetable and by adding that a tomato is a fruit. In this case, the answers
returned by TAAABLE, will be:

R4|ApplePie->Tomato or Kiwi->Tomato or Orange->Tomato
R5|ApplePie->Tomato or Apple->Tomato

Test base. For (), let the sets of known answers be:

— Ap={ A1l = "R1|RedPepper->Tomato",

A3 = "R3|0Onion->Tomato or RedPepper->Tomato"}
— An =10
— Au={ A2

"R2|Lettuce->Tomato or Onion->Tomato"}

Assertions. Let the assertions be those previously presented:

— 7a majority of positive answers” (see Fig. 4);
— "all positive known answers” (see Fig. 5).

Examples of results. Given the results collected when Tomato is a subclass
of Vegetable, both assertions succeed. Assertion evaluation returns the following
information:

— id-p: /plans/1 (tests plan for tomato correctness)
id-t: /tests/1 (query all salads with tomato)

— exec-date: 11-03-2013

— content:

{"Ap":["/answers/Al", "/answers/A3"],
llAnll . []
"Au": ["/answers/A2],

12 G. Canals, A. Cordier, E. Desmontils, L. Infante-Blanco, E. Nauer

"T": ["R1|RedPepper->Tomato",
"R2|Lettuce->Tomato or Onion->Tomato",
"R3|0nion->Tomato or RedPepper->Tomato"],

"assertions":["/assertions/1","/assertions/2"]

"results": [true,truel }

— global-result: true (all assertions are proved true)

When Tomato becomes a subclass of Fruit, both assertions fail. Assertion
evaluation returns the following information:

— id-p: /plans/1 (tests plan for tomato correctness)
— id-t: /tests/1 (query all salads with tomato)
exec-date: 13-03-2013

content:

{"Ap":["/answers/A1", "/answers/A3"],
"An": []
"Au": ["/answers/A2],
"T":["R4|ApplePie->Tomato or Kiwi->Tomato or Orange->Tomato",
"R5|ApplePie->Tomato or Apple->Tomato"],
"assertions":["/assertions/1","/assertions/2"]
"results": [false,false]}

— global-result: false (almost one assertion is proved false)

In conclusion, whether a critical modification in the knowledge base like moving
Tomato from Vegetable to Fruit produces a failure, the knowledge modification
will be rejected.

6 Conclusion and ongoing work

In this article, we introduced BEGOOOD, a generic system for the management
of non-regression tests. Although generic BEGOOOD was originally designed to
facilitate modifications of distributed ontologies BEGOOOD has two valuable
properties. Firstly, it is domain independent. Secondly, because of its RESTFul
architecture, it is easy to connect BEGOOOD with any web application providing
canonical results in response to a query The system is fully functional.

Future work will focus on the deployment of the system in the continuous
knowledge integration process (K-CIP), implemented within KOLFLOW. Among
future work, we also plan to build complete sets of tests to evaluate TAAABLE
and, more generally, to build a gold standard with which we could evaluate and
compare culinary applications such as the ones entering the Computer Cooking
Contest.

7

Collaborative Knowledge Acquisition through Tests 13

Acknowledgements

This work is supported by the French National Research agency (ANR) through
the KOLFLOW project (code: ANR-10-CONTINT-025), part of the CONTINT
research program. We would also like to thank Juliette Dompé, a student from
Université de Lorraine, who helped us to develop the first prototype.

References

1.

10.

11.

12.

S. Auer, S. Dietzold, J. Lehmann, and T. Riechert. OntoWiki: A tool for social,
semantic collaboration. In N. F. Noy, H. Alani, G. Stumme, P. Mika, Y. Sure, and
D. Vrandecic, editors, Proceedings of the Workshop on Social and Collaborative
Construction of Structured Knowledge (CKC 2007) at the 16th International World
Wide Web Conference (WWW2007) Banff, Canada, May 8, 2007, volume 273 of
CEUR Workshop Proceedings. CEUR-WS.org, 2007.

. F. Badra, R. Bendaoud, R. Bentebitel, P.-A. Champin, J. Cojan, A. Cordier, S. De-

sprés, S. Jean-Daubias, J. Lieber, T. Meilender, A. Mille, E. Nauer, A. Napoli, and
Y. Toussaint. Taaable: Text Mining, Ontology Engineering, and Hierarchical Clas-
sification for Textual Case-Based Cooking. In ECCBR Workshops, Workshop of
the First Computer Cooking Contest, pages 219-228, 2008.

J. Baumeister and G. J. Nalepa. Verification of distributed knowledge in semantic
knowledge wikis. In FLAIRS’09: Proceedings of the 22th International Florida
Artificial Intelligence Research Society Conference, pages 384-389. AAAI Press,
2009.

T. Berners-Lee. Linked data-the story so far. International Journal on Semantic
Web and Information Systems, 5(3):1-22, 2009.

A. Cordier, J. Lieber, P. Molli, E. Nauer, H. Skaf-Molli, and Y. Toussaint. Wiki-
taaable: A semantic wiki as a blackboard for a textual case-based reasoning system.
In SemWiki 2009 — 4th Semantic Wiki Workshop, Heraklion, Greece, May 2009.
J. Euzenat. Corporate memory through cooperative creation of knowledge bases
and hyper-documents. In Proc. 10th workshop on knowledge acquisition (KAW),
Banff (CA), pages (36)1-18, 1996.

R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. Phd dissertation, University of California at Irvine, 2000.

M. Fowler and M. Foemmel. Continuous integration,
http://martinfowler.com/articles/continuousIntegration.html, 2005.

T. Gruber. Collective knowledge systems: Where the social web meets the semantic
web. Web Semantics: Science, Services and Agents on the World Wide Web, 6(1):4
— 13, 2008. Semantic Web and Web 2.0.

J. Hendler and T. Berners-Lee. From the semantic web to social machines: A
research challenge for ai on the world wide web. Artificial Intelligence, 174(2):156
— 161, 2010.

R. Hoffmann, S. Amershi, K. Patel, F. Wu, J. Fogarty, and D. S. Weld. Amplify-
ing community content creation with mixed initiative information extraction. In
Proceedings of the 27th international conference on Human factors in computing
systems, CHI ’09, pages 1849-1858, New York, NY, USA, 2009. ACM.

P. Mika. Ontologies are us: A unified model of social networks and semantics.
Web Semantics: Science, Services and Agents on the World Wide Web, 5(1):5 —
15, 2007.

14

13

14.

15.

16.

G. Canals, A. Cordier, E. Desmontils, L. Infante-Blanco, E. Nauer

. H. Skaf-Molli, E. Desmontils, E. Nauer, G. Canals, A. Cordier, and M. Lefevre.
Knowledge Continuous Integration Process (K-CIP). In WWW 2012 - SW(CS’12
Workshop - 21st World Wide Web Conference - Semantic Web Collaborative Spaces
workshop, pages 1075-1082, Lyon, France, Apr. 2012.

D. Vrandeci¢ and A. Gangemi. Unit tests for ontologies. In On the Move to Mean-
ingful Internet Systems 2006: OTM 2006 Workshops, pages 1012—-1020. Springer,
2006.

D. Vrandecié, S. Pinto, C. Tempich, and Y. Sure. The diligent knowledge processes.
Journal of Knowledge Management, 9(5):85-96, 2005.

F. Wu and D. S. Weld. Autonomously semantifying wikipedia. In Proceedings
of the sizteenth ACM conference on Conference on information and knowledge
management, CIKM 07, pages 41-50, New York, NY, USA, 2007. ACM.

