Using a Task/Method Knowledge-Base for Assisting the Development
of Declarative Modellers

Emmanuel DESMONTILS & Francky TRICHET
IRIN
Université de Nantes & Ecole Centrale de Nantes
2, rue de la Houssiniere - BP 92208
44322 Nantes cedex 03

{desmontils,trichet}@irin.univ-nantes.fr

Abstract

The aim of the CordiFormes project is to propose a library of reusable objects and reusable
generating methods characterising an ontology of the declarative modelling domain. The indented
objective is to facilitate the development of declarative modellers, and more precisely to support
the choice of the most relevant technique to be used for generating the objects manipulated by the
modeller under construction. In this paper, we present how such an assistance can be supported by
a Task/Method Knowledge-Base. A Task/Method Knowledge-Base allows representing explicitly
all the relevant characteristics of the components of the CordiFormes library and therefore allows
developing computer-aided design tools. These tools help the designer when (1) selecting the
generating methods to be allocated to the objects and (2) checking the coherence of the adopted
methods according to the relationships between the objects.

Key-Words: Declarative modelling, Task/Method Knowledge-Base, Computer-aided design tools

1 Introduction

The declarative modelling (also called cooperative
computer aided design [1] or generative computer
aided design [2]) aims at allowing an end-user to
create scenes, in the context of a particular do-
main, by simply giving a set of properties and
constraints that the scenes will have to respect
[3]. This approach has given rise to a lot of
projects [1, 4, 5, 6, 7].

The modellers proposed in these works are
based on similar techniques and tools dedicated
to the generation of scenes (i.e. exploration of
the universe of potential scenes and selection of
the ones which correspond to the initial descrip-
tion). However, no standardization work has to
date been proposed. The aim of the CordiFor-
mes project [8] is to capitalise all this know-how.
This capitalisation is based on the development
of a library of reusable objects and reusable gen-
erating methods characterising an ontology of the
declarative modelling domain!. The indented ob-
jective is to facilitate the development of declar-
ative modellers, and more precisely to support
the choice of the most relevant technique to be
used for generating the objects manipulated by
the modeller under construction.

A first proposal of such a library is currently
integrated within the programming framework
provided by the CordiFormes project. This li-
brary contains a set of reusable objects which
are associated with predefined generating algo-
rithms. In this context, the programming frame-
work allows the designer (1) to define the ob-
jects that will be manipulated by the modeller
(by construction ex-nihilo and/or selection and
configuration of reusable components), (2) to al-
locate a generating method to each object (by
definition of specific algorithms and/or selection
and configuration of reusable algorithms) and (3)
to obtain a prototype of the intended modeller.
However, the current framework does not pro-
pose guidance when selecting and configuring the
reusable components of the library. The different
objects and algorithms are simply described by a
name, that is supposed to be sufficiently explicit
to denote the functionality of the underlying al-
gorithm and/or the semantic of the underlying

! An ontology is a theory of what entities can exist in
a particular domain [9].

concept. They are not described by knowledge
related to the selection criteria of the algorithms
and/or to the way the objects are represented.
Therefore, the one only exploitation of the library
consists in presenting all the possible algorithms
associated to a selected object. In other words,
the current description of the library does not
provide sufficient means to help the designer to
select the generating methods to be adopted for
each object, neither to check if the adopted me-
thod is technically usable and relevant for the
considered object.

The solution we advocate consists in repre-
senting the reusable components of the library
by the use of a Task/Method Knowledge-Base.
The underlying goals of this Knowledge-Base is
to represent explicitly the intrinsic characteristics
of the generating algorithms (e.g. the require-
ments or the complexity).

The task notion is used to characterise an al-
location objective of a generating method for an
object O;. A task is defined by preconditions,
which describe the type of the object to be gen-
erated (e.g. a color type object or a texture type
object), and a set of associated methods.

The method notion is used to characterise a
generating technique which can be specific to a
particular object (e.g. a method dedicated to
generate pale colors) or generic and reusable for
all the objects (e.g. a random type generation).
A method is defined by a selection context and
a favourable context, which respectively describe
when it is possible and relevant to use it. Knowl-
edge associated to the selection context describes
technical constraints of the algorithm underlying
the method such as “a method applying a gener-
ation by enumeration can only be used when the
domain of the considered object O; is bounded and
discrete”. Knowledge associated to the favou-
rable context describes the set of solutions that
can be produced by the method. This knowledge
is used to take the preferences of the designer
into account. For instance, if the designer wants
the modeller to be able to produce all the solu-
tions for the object Oy, it is preferable to allocate
an enumeration type method to O; rather than
a random type method, because this latter does
not guarantee the generation of all the solutions.

A selection mechanism uses this knowledge
for assisting the designer when allocating gener-

ating methods. This mechanism can be described
as follows. Given an object O;, the system first
identifies a set of candidate methods for generat-
ing O; (use of the selection context of the meth-
ods as a selection criteria) and then selects even-
tual relevant methods from the set of candidate
ones (use of the favourable context as a selection
criteria). A method is then advised to the de-
signer, who adopts the recommended method or
proposes another one. In this latter case, the
system verifies if the proposed method M; is co-
herent. The system checks (1) if M; is applica-
ble to the properties of the considered object O;
(bounded domain, discrete domain, etc.) and (2)
if M; does not introduce incompatibilities with
methods previously allocated to objects in rela-
tion with O; (for instance, an object O; which
is defined from the object O cannot be gener-
ated by an enumeration type generation method
if the object Oy is generated by a random type
generation method).

A first proposal of this Knowledge-Base is
currently being developed within the DSTM tool.
DSTM (Dynamic Selection of Tasks and Meth-
ods) is a programming framework dedicated to
the construction of Knowledge Based Systems
based on a Task/Method architecture [10]. This
tool has been chosen because of the flexibility and
the explicit representation of knowledge it pro-
vides (i.e. explicit representation of the tasks,
the methods and the underlying selection mech-
anisms). In this context, DSTM allows us to
simultaneously model and implement the Know-
ledge-Base.

The main objective of this paper is to empha-
sise how a Task/Method Knowledge-Base (clas-
sically used in Knowledge Engineering [11]) can
be of effective help for assisting the development
of declarative modellers.

In Section 2, we briefly present the construc-
tion process of a declarative modeller advocated
in the CordiFormes project and we lay down the
basic definitions underlying the putting into prac-
tice of our approach for selecting and checking
the coherence of the generating methods. In Sec-
tion 3, we describe the modelling principles of the
Task /Method Knowledge-Base and justify the in-
terest of using the DSTM tool as a support for
implementing such a base. In Section 4, we dis-

cuss the choice of a Task/Method Knowledge-Ba-
se rather than a production-rule Knowledge-Base
and describe how we plan to enhance the descrip-
tion of a method in order to refine the selection
criteria. We conclude this paper by pointing out
the potential interest of a Task/Method Know-
ledge-Base for adapting the solutions provided by
the final declarative modeller to the end-user’s
wishes.

2 The declarative modelling and
the project CordiFormes

Within a traditional approach of computer graph-
ics, the end-user has to model and implement by
hand (by using abstract specifications provided
by the system such as geometrical, physical or
topological properties) all the objects he wants
to manipulate. The declarative modelling aims
at releasing the end-user from such a program-
ming work. Free from technical constraints, the
end-user can thus focus his work on high-level
tasks [12]. The use of a declarative modellers
can be divided into three steps [3, 13]:

1. the description of the scene: the end-user
describes what he wants to obtain by giving
a set of propertiesz;

2. the generation of the scene: the modeller
computes the solutions that respect all the
properties of the scene to be generated;

3. the insight of the scene: the end-user selects
(by using appropriated tools) the more rel-
evant solutions provided by the modeller; if
no solution fits the needs (i.e. no solution
satisfies all the properties of the scene), the
end-user can refine the initial description.

These steps have been studied in several works
and more details can be found in [14] and [12].
2.1 Constructing a declarative modeller

through the CordiFormesframework

The construction process of a declarative mod-
eller provided by the CordiFormes project con-

2The means used to describe a scene depends on the
considered domain. The properties of a scene can be for-
mulated in natural language (oral or written), by the use
of drawings, etc.

sists in (1) defining the different objects manip-
ulated by the future modeller and (2) allocating
a generating method for each of these objects.

2.1.1 Definition of the objects

The definition of the objects is based on the con-
cept notion. One can distinguish two types of
concepts: the terminal concepts and the non-
terminal concepts. A terminal concept is a con-
cept which is only described by a domain. A
domain, denoted [Bm,BM],, is characterised by a
list of possible values and a unity. A non-terminal
concept is a concept defined from a set of com-
ponent-concepts. A component-concept can be a
terminal concept or a non-terminal concept.

Figure 1 presents an instance of a hierarchy
of concepts. The non-terminal concept “House”
is defined from the concepts “Roof” and “Wall”.
The concept “Wall” is defined from the concepts
“Height”, “Width”, “Texture” (whose domain is
{stone, wood, brick}) and “Color”.
terminal concept “Color”, defined according to a
RGB model, is composed of three terminal con-
cepts called “Red”, “Green” and “Blue” (whose
domains are [0,255];).

The non-

Height ~ Width

—_———— e ——

r==---- 1
1[0.255],

[iaieliniedal 1
:[(),255]I :

Figure 1: A hierarchy of concepts

The current library proposed by CordiFormes
contains several predefined concepts classically
used in computer graphics (e.g. colors, bound-
ing boxes or classical curves and shape models).
However, the considered domain can require the
creation of specific concepts which are not man-
aged by the library. For constructing a terminal
concept, the designer has to define the domain.
For constructing a non-terminal concept, the de-

signer has to define its component-concepts and
their relationships. These component-concepts
can be constructed by generalising or specialis-
ing existing concepts.

2.1.2 Allocation of the methods

Proposal of a new classification

Works on declarative modelling are generally
classified according to the building methods they
are based on: algorithmic exploration [15, 7, 5],
inference techniques on rules and facts [16, 17],
generative grammars [6, 1, 2], random generation
using constraints [4, 18], etc.

Within the CordiFormes project, the adopted
classification is based on the intended objectives
and the effects expected for the end-user. In this
context, only two classes of generation have been
retained: enumeration type generation and ran-
dom type generation. A method is member of the
enumeration type generation if, given an object
k, what would be the object k 4+ 1 can be pre-
dicted for certain. A method is member of the
random type generation if what would be the ob-
ject k + 1 cannot be predicted for certain from
the object k.

All the current works on declarative mod-
elling can be classified according to these two
classes.

The recursive generation

The recursive generation is based on the rep-
resentation of the objects with hierarchies of con-
cepts. This technique consists in constructing a
concept C; from its generating component-con-
cepts®: a solution for each generating component-
concept of C; is first constructed, and then C; is
constructed according to the solutions computed
for the component-concepts.

In this context, the generation class of a non-
terminal concept C; depends on the generation
classes of its component-concepts. Intuitively, a
concept C; is defined with a random type gener-
ation if one of its component-concepts is defined
with a random type generation; on the contrary,

All the component-concepts of a non-terminal concept
C; are not necessary for generating C;. A component-con-
cept which is essential to generate a concept is called a
generating concept.

C; is constructed with a enumeration type gen-
eration.

The generating method of a terminal concept
(or a non-terminal concept considered as a termi-
nal one from a generation point of view) can be
member of the enumeration class or the random
class. In both cases, different exploration tech-
niques can be used according to the preferred or-
der for an enumeration class (descending order,
growing order, etc.) and the adopted probabilis-
tic rules for a random class.

Problems with the recursive generation

The choice of a generating method is gener-
ally influenced by the generating class intended
for the considered object. When allocating a gen-
erating method to a particular concept C;, the
designer asks himself (in an implicit way) ques-
tions such as “Should the modeller be able to de-
liver all the solutions for C;? or “Should the
modeller be able to produce two consecutive so-
lutions relatively different for C;?.
such questions direct the designer towards the
choice of an enumeration type method or a ran-
dom type method.

However, when allocating the generating meth-
ods, the designer can introduce discrepancies be-
tween the intended generation classes and the ef-
fective adopted buildings methods. For instance,
let us suppose that the generation class intended
for the concept C; (defined from C,, and C,) is
the enumeration one and that the generating me-
thod adopted for C,, is member of the random
class. In this context, a discrepancy occurs be-
cause a non-terminal concept cannot be gener-
ated by a method member of the enumeration
class when one of its component-concepts is gen-
erated by a method member of the random class.
Such mistakes take their origin from the fact that
the manipulated concepts can be complex (deep
hierarchies, lots of component concepts, etc.).

Within the current CordiFormes framework,
a generating method can be allocated to a con-
cept C; in three different ways:

Answers to

1. Implicit allocation when selecting C; in the
library or creating C; without preferences
about how C; must be generated. The de-
fault generating method is allocated (each
concept of the library is associated with a
default generating method and when the

designer creates a new concept, a default
method is automatically associated).

2. Fzxplicit allocation by modification when se-
lecting C; in the library and modifying the
default generating method. This modifica-
tion consists in (1) allocating a new method
for C;, (2) modifying the generating meth-
ods of the component-concepts of C; or (3)
modifying the set of generating concepts of

C;.

3. Ezplicit allocation by creation when creat-
ing C; ex-nihilo. When C; is a non-terminal
concept, the designer can directly allocate
a specific generating method (without fo-
cusing on the component-concepts) or can
first focus on allocating generating methods
to the component-concepts (the generation
class of C; would then be defined by the

recursive generation).

Whatever allocation approach is used, the de-
signer can introduce discrepancies in the hierar-
chies of concepts. For instance, in the context
of an explicit allocation by modification (second
case), the designer can modify the methods of the
component-concepts without modifying the gen-
eration class of C;. This can lead to an incoher-
ence which could render the effective generation
of the scene impossible.

One can notice that in the context of a more
sophisticated conception process (e.g. the draft
path design), some discrepancies can have no in-
fluence on the effective generation of the scene
because some of the objects are not constructed
in the same time. For instance, when construct-
ing a dolmen by draft path design (Cf. Figure 2),
one first constructs the general shape of the dol-
men (by using a method member of the enumer-
ation class). When a satisfactory solution is ob-
tained, one generates the component-concepts by
using methods members of the random class. Al-
though these methods are in conflict with the one
adopted for the form of the dolmen, this would
not conduct to a discrepancy because the specific
objects are not generated at the same time than
the general one.

Figure 2: The draft path design of a dolmen [5]

2.2 Needs to integrate new tools in the
CordiFormes framework

The current architecture of the CordiFormes{rame-
work is a three-layer one:

1. The kernel layer. This layer allows the de-
signer to implement the objects and their
associated generating methods. It is com-
posed of (1) the library of reusable and con-
figurable algorithms and predefined objects
and (2) a set of programming structures
which allows the designer to implement its
own algorithms and objects. This layer has
been developed above the Java language.

2. The interface layer. This layer allows the
designer to define the interaction with the
end-user. It contains a set of predefined di-
alogues which are used to manage the use

the

description, the generation and the evalua-

of the final declarative modeller, i.e.

tion of the scene.

3. The prototype layer. This layer allows the
designer to obtain a first proposal of the
intended declarative modeller.

However, the different tools provided by this
three layers are not sufficient for assisting the
construction of a declarative modeller. In par-
ticular, no tools are dedicated to assist the de-
signer when selecting and configuring the reus-
able components of the library (provided by the
kernel layer) and when checking the coherence of
the adopted generating methods. Therefore, the
framework has to be enhanced with computer-
aided design tools.

The solution we propose consists in construct-
ing a Task/Method Knowledge-Base used to in-
dex the current library and defining appropriated
tools for selecting and checking the coherence of

the generating methods. This proposal leads to
an extension of the current three-layer architec-
ture to a four-layer one (Cf. Figure 3).

Knowledge
base

1. Kernel layer
A Library of reusable and
M| configurable algorithms
and predefined objects
A set of programming
structures

/

Computcr—aideh

design tools
- 2. Interface layer
Documentation 7 ipti
4 Description
t DSTM... N Evaluation

Parameters...

3. Prototype layer

Figure 3: From a three-layer to a four-layer ar-
chitecture of the CordiFormes framework

3 Constructing the Knowledge-
Base with the DSTM frame-
work

Interest of the DSTM framework

DSTM (Dynamic Selection of Tasks and Meth-
ods) is a programming framework dedicated to
the construction of Knowledge Based Systems
(KBS) based on a Task/Method architecture [10].
A KBS constructed with DSTM is composed of
(1) a set of tasks and methods (which describe the
problems to be solved and the different possible
means to solve them) and (2) a set of selection
mechanisms which allows the putting into prac-
tice of opportunistic behaviours (dynamic selec-
tion of the most relevant task to be studied ac-
cording to the current solving context, and then
dynamic selection of the most favourable method
to achieve the selected task).

What makes DSTM originality (in compari-
son with related work in Knowledge Engineering
such as Lisa [19] or MML [20]) is that this frame-
work does not impose built-in definitions of what
must be a task and a method and how tasks and
methods must be selected. DSTM allows the cus-
tomisation of the task and method definition, i.e.
the set of slots that are used to describe the dif-
ferent characteristics of a task (resp. method)
such as Objectives or Selection context, and then

3.1

the selection mechanisms. This leads to a better
representation of the studied expertise.

In the context of the CordiFormes project,
the expertise we want to model is related to the
know-how of the computer graphics experts con-
cerning the generating methods classically used
for the objects. In this context, we have used
the DSTM framework to construct a preliminary
sketch of the Task/Method Knowledge-Base. The
flexibility and the explicit representation of knowl-
edge provided by this tool (explicit representa-
tion of the tasks, the methods and the underlying
selection mechanisms) allows us to test different
versions of the base before fixing the final one.
In other words, DSTM has been used both for
studying how to model and then implementing
the Task/Method Knowledge-Base.

3.2 Modelling the Knowledge-Base

3.2.1 The adopted task and method mod-

elling primitives

The modelling choices adopted for the task and
method primitives have been influenced (1) by
the technical constraints of the current generat-
ing methods (e.g. “a generating method member
of the enumeration class can only be used for con-
cepts whose domains are bounded and discrete”)
and (2) by our will to take into account the objec-
tives intended for the declarative modeller (e.g.
“the modeller would be able to generate all the
possible solutions for a concept” or “two solutions
asked by the end-user would be relatively differ-
ent”).

The task notion is used to characterise an allo-
cation objective of a generating method for an ob-
ject O;. A task is defined by preconditions which
describe the type of the object to be generated
(e.g. a colortype object or a texture type object),
and a set of associated methods. For each object
identified in the library corresponds an allocation
task.

The method notion is used to characterise a
generating technique which can be specific to a
particular object (e.g. a method dedicated to
generate pale colors) or generic and reusable for
all the objects (e.g. a random type generation
method). A method is defined by a selection
context and a favourable context, which respec-
tively describe when it is possible and relevant

to use it. Knowledge associated to the selection
context describes technical constraints of the al-
gorithm underlying the method such as “a non-
terminal concept is necessarily generated by a me-
thod member of the random class when one of
its component-concepts is generated by a method
member of the random class”. Knowledge asso-
ciated to the favourable context describes the set
of solutions that can be produced by the method.
This knowledge is used to take the preferences of
the designer into account. For instance, when the
designer wants the modeller to be able to deliver
all the solutions for an object Oy, it is preferable
to use an enumeration type method rather than
a random type method, because this latter does
not guarantee the production of the exhaustive
set of the solutions.

Figure 4 presents the task dedicated to the
generation of a color type concept and the differ-
ent generating methods currently identified for
such a purpose. The method Generate pale col-
ors is specific to the task Allocate a generating
method to a color type concept. The methods
Enumeration type generation and Random type
generation are techniques that can be used what-
ever the considered object is (these methods are
associated to all the tasks of the Knowledge-Ba-
se).

As one can see from Figure 4, a set of ques-
tions is associated to each task. The designer
is presented with these questions when the task
is selected (e.g. when the designer is searching
a generating method for the concept C; under-
lying the task). Answers to these questions en-
hance the selection context (initially composed of
knowledge related to the properties of the studied
concept C; such as “Cj is a non-terminal concept
defined from the concepts C,, and C,” or “C; is
a terminal concept whose domain is continuous”)
with knowledge related to the designer’s choices.
Some questions are shared by all the tasks be-
cause they do not concern the semantic of a par-
ticular concept but the way to generate concepts
(e.g. “Do you want to obtain all the solutions?”).
Others are more specific and are used to charac-
terise special features of a concept. For instance,
the question “Do you only want to generate pale
colors?’ is specific to the task dedicated to the
allocation of a method to a color type concept.
This question permits the orientation of the ad-

Task

Allocate a generating method to a color type concept

Preconditions Type-Of(Ci)=Color
Questions Q1 : "Do you want to generate only pale colors?"
Q2 : "Do you want to obtain consecutives solutions relatively different?"
Q3 : "Do you want to obtain all the solutions?"
Method Generate pale colors

Selection context

Favourable context

(Terminal_Concept(Ci) A Bounded_Domain(Ci) A Discrete_Domain(Ci)) v
(Non_Terminal_Concept(Ci) A (Vj, Component_Concept(Cj,Ci) . Enumeration-Type-Generation(Cj))) v
(Non_Terminal_Concept(Ci) A Domain(Ci)=& A Bounded_Domain(Ci) A Discrete_Domain(Ci))
((Only pale colors have to be generated) A (All the solutions have to be generated)) v ...

Method
Selection context

Favourable context

Enumeration type generation

(Terminal_Concept(Ci) A Bounded_Domain(Ci) A Discrete_Domain(Ci)) v
(Non_Terminal_Concept(Ci) A (Vj, Concept_Composant(Cj,Ci) . Enumeration-Type-Generation(Cj))) v
(Non_Terminal_Concept(Ci) A Domain(Ci)=& A Bounded_Domain(Ci) A Discrete_Domain(Ci))

(All the solutions have to be generated) v .

Questions QI : "Do you want to specify an enumeration order?" ...
Method Generate by monotonic enumeration
Selection context Inherited from the Enumeration type generation
Favourable context (Enumeration order is monotonic) v ...
Method Random type generation

Selection context

Favourable context

Terminal_Concept(Ci) v

(Non_Terminal_Concept(Ci) A (3j, Component_Concept(Cj,Ci) . Random_Type_Generation(Cj))) v
(Non_Terminal_Concept(Ci) A Domain(Ci)=J)

(Two consecutive solutions have to be relatively different) v ...

Task

Questions Q1 : "Do you want that all the solutions are equiprobable?" ...
Method Generate according to a normal random rule
Selection context Inherited from the Random type generation
Favourable context (The solutions are equiprobable) v ..
Method Generate according to an equiprobable random rule
Selection context Inherited from the Random type generation
Favourable context (The solution are not equiprobable) v ...

Method Random/enumeration type generation

Selection context

Favourable context
Questions

(Terminal_Concept(Ci) A Bounded_Domain(Ci) A Discrete_Domain(Ci)) v
(Non_Terminal_Concept(Ci) A (Vj, Component_Concept(Cj,Ci) . Enumeration_Type_Generation(Cj))) v
(Non_Terminal_Concept(Ci) A Domain(Ci)=& A Bounded_Domain(Ci) A Discrete_Domain(Ci))

((Two consecutive solutions have to be relatively different) A (All the solutions have to be generated)) v ...

Caption —

Operational
Method
Prototype

ethod

Operational
Method

Operational
Method

Terminal_Concept, Bounded_Domain, Component_Concept, etc. are primitives which manipulate the description of the concepts.

Figure 4: An example of a task and its associated methods

vice towards a method that focuses on the prop-
erty saturation (in our case, the method Generate
pale colors).

Two kinds of methods are distinguished: pro-
totype methods, which characterise a generation
class, and operational methods, which characterise
effective building algorithms. A prototype me-
thod is the generalisation of operational meth-
ods (Specialisation/Generalisation mechanism).
For instance, the operational methods Generate
according to a normal random rule and Gener-
ate according to an equiprobable random rule are
specialisations of the prototype method Random
type generation. A set of questions is associ-
ated to a prototype method. The designer is
presented with these questions when the proto-
type method is considered as a candidate method
(when the knowledge associated to its selection
context is verified) or a favourable method (when
it is a candidate method and the knowledge as-

sociated to its favourable context is verified) for
generating the considered concept C;. Answers
to these questions enhance the selection context
conditioning the choice between methods mem-
bers of a same generation class. For example, the
question “Do you want to specify an enumeration
order?’, associated to the method Enumeration
type generation, allows the designer to define its
own enumeration order.

Questions associated to the tasks and the pro-
totype methods allow the system (1) to dynam-
ically acquire the knowledge required to select
the most relevant generating method and (2) to
dynamically construct the interaction with the
designer. All the questions are not asked at the
same time (but only when they are relevant to be
asked).

only when they are required. These two aspects

In other words, resources are mobilised

are put into practice by the selection mechanism.

3.2.2 The adopted selection mechanism

The selection mechanism is based on the follow-
ing actions:

(1)

(2)

(6)

selection of an allocation task (use of the
Preconditions of the tasks as a selection cri-
terion),

refinement of the selection context by inter-
acting with the designer (use of the Ques-
tions associated to the selected task),

identification of candidate methods (use of
the Selection context of the methods as a
selection criterion),

identification of favourable methods (use of
the Favourable context of the methods as a
selection criterion),

refinement of the selection context by inter-
acting with the designer (use of the Ques-
tions associated to the selected prototype
methods),

selection of the generating method (use of
the Favourable context of the operational
methods as a selection criterion),

(7) justification (to the designer) of the selected

generating method.

At the end of step (4), several cases are pos-

sible:

Case 1. Only one method is favourable and

this method is an operational one or only
one method is candidate (none is favou-
rable) and this method is an operational
one. Steps (5) and (6) are omitted and the

system justifies the selected method (step 7).

Case 2. Only one method is favourable and this

method is a prototype one or only one me-
thod is candidate (none is favourable) and
this method is a prototype one. Steps (5),
(6) and (7) are sequentially performed.

Case 3. Several methods are favourable and

all these methods are operational ones or
several methods are candidate (none is fa-
vourable) and all these methods are opera-
tional ones. Steps (5) and (6) are omitted.

The system presents (and justifies) the dif-
ferent candidate and/or favourable meth-
ods and the designer is asked to select one
(step 6). When there exists both candidate
and favourable methods, although the sys-
tem gives priority to the favourable meth-
ods, it also accepts the choice of a candidate
method.

Case 4. Several methods are favourable and

some of them are prototype ones and oth-
ers operational ones or several methods are
candidate (none is favourable) and some of
them are prototype ones and others opera-
tional ones. The system pursues the selec-
tion mechanism by only considering the op-
erational methods (Cf. Case 1 and Case 2).
This heuristic takes its origin from our will
to give more importance to the designer’s
choices which characterise specific features
of the considered concept. For instance,
in a context where the designer wants to
obtain all the solutions of pale colors, the
methods Generate pale colors and Enumer-
ation type generation are both favourable
methods (knowledge associated to their Fa-
vourable context is verified). However, pri-
ority must be given to the method Generate
pale colors which totally satisfies (and not
partially as this is the case for the method
FEnumeration type generation) the wishes of
the designer (Cf. Figure 4).

Case 5. Several methods are favourable and all

these methods are prototype ones or several
methods are candidate (none is favourable)
and all these methods are prototype ones.
The system selects the prototype method
which better satisfies the designer’s choices.
Steps (5), (6) and (7) are then sequentially
performed. For instance, let us suppose
that, for a color concept type whose do-
main is bounded and discrete, the designer
wants to obtain all the solutions with the
constraint that two consecutive solutions
must be relatively different. In this context,
the methods Random type generation and
Random/enumeration type generation are
both favourable methods (Cf. Figure 4).
However, priority must be given to the me-
thod Random/enumeration type generation

which satisfies all the wishes of the designer
(the method Random type generation does
not guarantee the getting of all the solu-
tions).

One can underline that the taking into ac-
count of the designer’s wishes can lead to some
discrepancies. For instance, let us suppose that
one of the choices is to permit the generation of
all the solutions of the concept C;, whose domain
is non-bounded. In this context, the fact that C;
domain is non-bounded imposes a random type
generation, whereas the choice of the designer re-
quires an enumeration type generation. In these
cases, the retained solution is (1) to inform the
designer of the expected incompatibility and (2)
to give priority to the respect of the technical fea-
tures (e.g. the Selection context has priority on
the Favourable context).

Then, given a concept C;, the designer may
want to use its own generating method. In order
to detect such a situation, the question “Do you
want to allocate a personal generating method?’
is asked first and the selection mechanism is mod-
ified from the step (3) as follows:

(3p) acquisition of the features of the new gen-
erating method proposed for C;,

(4p) verification of the coherence of the new gen-
erating method proposed for C;.

The aim of step (3;) is to acquire informa-
tion required for adding the new method in the
Knowledge-Base. This information concerns the
requirements of the method (“Can your method
be used to generate a concept whose domain is
bounded?’) and the set of solutions that it can
produce (“Can your method produce all the so-
The objective is to fill in the Selec-
tion context and the Favourable context of the me-

lutions?").

thod. Moreover, in order to point out the even-
tual specificities of the new method, the designer
can formulate questions which will be associated
to the task underlying C;. The aim of step (43) is
to check if the proposed method does not intro-
duce incoherences with the methods previously
allocated to concepts in relation with C;.

To sum-up, at the end of a selection cycle for
a concept C;, different cases can occur:

1. the method proposed by DSTM satisfies all
the wishes of the designer and he adopts it,

2. an incoherence has been detected and the
designer follows the advice of DSTM (he
adopts the proposed method),

3. an incoherence has been detected and ex-
plicited to the designer who does not want
to relax his constraints and/or adopt an-
other method than his. In this case, a nego-
tiation process is proposed, from which the
designer can modify his previous choices
about the generating methods and/or the
definition of some concepts.

3.3 Integration of the Knowledge-Ba-
se in the CordiFormes framework

A first version of the Task/Method Knowledge-
Base is currently being implemented within the
DSTM framework. DSTM is based on the object-
oriented layer Ceyz of the LeLisplanguage. There-
fore, this current Knowledge-Base will only be
manipulated from a LelLisp environment. How-
ever, a current project aims at developing DSTM
above the Java language [21]. This will facili-
tate the integration of the Knowledge-Base in the
CordiFormes framework, which has also been de-
veloped above the Java language. The architec-
ture we propose is presented Figure 5.

First, the designer defines the hierarchies of
concepts (which will be manipulated by the mod-
eller) by using the tools provided by the kernel
layer (Cf. Section 2.2). These hierarchies are
represented as Java objects. In order to allocate
a generating method for each concept, the hi-
erarchies are explored within an bottom-up ap-
proach (e.g. from the terminal concepts to the
non-terminal ones). Given a concept C;, a first
diagnosis is made in order to define the techni-
cal features of C;. This diagnosis is contextual
because it takes into account the different alloca-
tions that could be done previously. For instance,
for the concept Cj (Cf. Figure 5), this diagno-
sis can be interpreted as follows: “C} s a non-
terminal concept and one of its component-con-
cepts is generated by a method member of the ran-
dom class”. Then, the dynamic selection of tasks
and methods is performed. According to the situ-
ation (i.e. conflict or consensus), DSTM directly

Hierarchies of concepts
represented in Java

Technical and contextual
diagnosis of the

Bottom-up explorati
of the hierarchies

Updating of the
hierarchies

considered concept

DSTM

Non_Terminal_Concept(Ck) A

‘ Selection mechanism ‘

(3j, Component_Concept(Cj.Ck) -
Random_Type_Generation(Ck)) A ...

H
Tasks-Methods

~—~—

Cx will be generated by the method

M; member of the random class (Rd)

‘ Interaction >

Negotiation with the
conceptor

Figure 5: Integration of the Knowledge-Base in the CordiFormes framework

allocates the proposed method to C; or advocates
a negotiation phase. This negotiation can con-
duct to modify the previous allocated methods or
the Java hierarchies. The current Knowledge-Ba-
se (implemented within the original DSTM) does
not yet provide this negotiation process and does
not yet manage the configuration of the reusable
components.

4 Discussion

4.1 Task/Method Versus production-
rule Knowledge-Base

The objectives underlying the construction of the
Knowledge-Base are (1) to allow the system to
justify the proposed method (this requires the
explicitation of all knowledge that plays a role
in the selection process) and (2) to facilitate the
updating and the upgrading of the base. A rule-
base formalism is not adapted for such purposes.
A production rule is generally composed of a set
of premises P;, where each premise denotes a part
of the conditions required to select the method
underlying the rule. However, these premises are
not structured according to the nature of the do-
main knowledge they represent. For instance,
the following rule (that could be used to repre-
sent when the method Generate pale colors can
be used) does not explicitly differentiate that the
premises P1, P2, P3 and P4 denote technical se-
lection criteria whereas the premises P5 and P6

denote selection criteria related to the choices
of the designer. Therefore, the system can not
distinguish two premises of different nature and,
consequently, is not able to perform a specific
selection mechanism, in particular a mechanism
that can differentiate candidate methods and fa-
vourable methods (Cf. Section 3.2.2). Moreover,
modifying a production-rule Knowledge-Base is
generally a complex process [11] because of the
difficulty to keep in mind a synthetic understand-
ing of the general behaviour from a set or isolated
low-level rules. A Task/Method representation
formalism is more convenient for expliciting, up-
grading and updating a Knowledge-Base.

If Type-0£f(Ci)=Color P1
Terminal _Concept(Ci) P2
Bounded_Domain(Ci) P3
Discrete_Domain(Ci) P4

Only pale colors have to be generated P5

All the solutions have to be generated P6
Then 'Generate pale colors'" is a candidate

and favourable method

4.2 Towards the taking into account of
new knowledge as selection crite-
ria

A concept C; can have several sets of generating
concepts (Cf. Section 2.1.2). A set of generat-
ing concepts characterise a way to represent C;
(i.e. a representation model for C;). However,
a representation model can influence the set of
solutions that can be computed for C;. For in-
stance, a color type concept can be represented

with multiple models such as the RGB model or
the TLS model. These models greatly influence
the generation step as they do not lead to the
same set of solutions.

Therefore, these different point of views on
the same concept must be taken into account
when allocating a generating method. We pro-
pose (1) to associate to each method a descrip-
tion of the representation model of C; it is based
on and (2) to define specific questions (associ-
ated to the tasks) which will allow the designer
to specify a particular representation model for
C;. We also plan to enhance the description of a
generating method with knowledge related to its
complexity and its reliability [2, 15].

4.3 Interest of a Task/Method Know-
ledge-Base for adapting the solu-
tions to the end-user’s wishes

When constructing a declarative modeller with
the CordiFormes framework, the designer allo-
cates one and only one generating method to a
concept, and this choice is definitive.
words, the designer imposes his choices to the
end-user. In order to relax this constraint, we
plan to offer the designer the possibility to de-
fine several potential generating methods for a
same concept. Theses methods will be used to
dynamically adapt the generated solutions to the
end-user’s wishes. For instance, for generating
a house, it could be interesting to propose two
methods: one which generates detailed solutions
(time consuming and resources heavy method)
and another one which generates crude solutions
(economic method). These methods, similar in
functionality, will allow the modeller to adapt it-
self to the end-user’s wishes. These wishes can
be expressed in an explicit way in the descrip-
tion (e.g. “I want a coarse house rapidly” which
influences the modeller to choose the second gen-
eration method) or in a implicit way and there-
fore interpreted by the modeller. For example,
when the end-user says “On the foreground, I
want the house that I have previously described
and on the background, a white house”, the mod-
eller interprets the fact that the end-user does not
want to focus on the white house and therefore
selects the method which generates crude solu-
tions. One can notice that these choices can be

In other

reviewed according to the adopted visualisation
point of view. For instance, in the previous exam-
ple, if the end-user uses virtual reality tools (as
for instance VRML), the solution advocated by
the system is not a satisfactory one because the
end-user can move in the scene and therefore can
focus on all the objects of the scene. In this con-
text, the background house has to be generated
by a method which produces detailed solutions.

This example underlies the interest of using a
Task/Method Knowledge-Base during the use of
a declarative modeller. Indeed, providing more
than one method per object increases the flex-
ibility of the modeller and allows it to dynam-
ically adapt the solutions (e.g. dynamically se-
lects the more relevant generating method) to the
end-user’s wishes.

Acknowledgments: We are grateful to J.-Y. Mar-
tin, P. Tchounikine and L. Hartley for providing a number
of useful comments on earlier versions of this paper.

References

[1] S. Kochhar. CCAD: A Paradigm for Human-
Computer Cooperation in Design. [FEF Computer
Graphics and Applications, 14(3):54-65, 1994.

[2] R. F. Woodbury. Searching for Designs: Paradigm
and Practice. Building and Environment, 26(1):61-
73, 1991.

[3] M. Lucas, P. Martin, D. Martin, and D. Plemenos.
Le projet ExploFormes : quelques pas vers la modéli-
sation déclarative de formes. In BIGRE, editor, Acte
des journées AFCET-GROPLAN, 67, pages 35-49,
France, 1989.

[4] D. Chauvat. Le projet VoluFormes : un exemple de
modélisation déclarative avec controle spatial. PhD
thesis, Université de Nantes, 1994.

[5] F. Poulet and M. Lucas. Modelling Megalithic Sites.
In Furographics’96, pages 279-288, France, 1996.

[6] A. Rau-Chaplin, B. MacKay-Lyons, and P. F.
Spierenburg. The LaHave House Project: Towards
an Automated Architectural Design Service. In
Cadex’96, pages 24-31, 1996.

[7] L. Khemlani. GENWIN: A Generative Computer
Tool For Window Design in Energy-Conscious Ar-
chitecture. Building and Environment, 30(1):73-81,
1995.

[8] E. Desmontils. Le projet CordiFormes : une plate-
forme pour la construction de modeleurs déclaratifs.
PhD thesis, Université de Nantes, 1998.

[9] J. Charlet, B. Bachimont, J. Bouaud, and
P. Zweigenbaum. Ontologie et réutilisabilité : expéri-
ence et discussion. In Cépadues-Editions, editor, Ac-
quisition et ingénierie des connaissances, pages 69—
87, 1996.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

F. Trichet and P. Tchounikine. Reusing a Flexi-
ble Task-Method Framework to Prototype a Knowl-
edge Based System. In 9th International Conference
on Software Fngineering and Knowledge Engineering
(SEKE’97), pages 192-199, Spain, 1997.

J.M. David, J.P. Krivine, and R. Simmons. Second
Generation Ezpert Systems. Springer-Verlag, 1993.

C. Colin, E. Desmontils, J.-Y. Martin, and J.-P.
Mounier. Working with Declarative Modeler. In
Compugraphics’97, pages 117-126, Portugal, 1997.

M. Lucas. Equivalence Classes in Object Shape Mod-
eling. In TFIP TC5/WG 5.10 Working Conference on
Modeling in Computer Graghics, pages 35-49, Japan,
1991.

M. Lucas and E. Desmontils. Les modeleurs déclarat-
ifs. Rewvue Internationale de CFAO et d’infographie,
10(6):55975857 1995.

C. Colin. Modélisation déclarative de scénes a base
de polyédres élémentaires. PhD thesis, Université de
Rennes, 1990.

D. Martin and P. Martin. Declarative Generation of a
Family of Polyhedra. In GraphiCon’93, Russia, 1993.

D. Plemenos. Contribution a l’étude et au développe-
ment des techniques de modélisation, génération et
visualisation de scénes : le projet MultiFormes. Prof.
thesis, Université de Nantes, 1991.

E. Giunchiglia, A. Armando, P. Traverso, and
A. Cimatti. Visual Representation of Natural Lan-
guage Scene Description. IEEE Transaction on Sys-
tems, Man and Cybernetics, 26(4):575-589, 1996.

I. Jacob-Delouis and J.P. Krivine. LISA: un langage
réflexif pour opérationaliser les modeles d’expertise.
Revue Intelligence Artificielle, 9(1):53-88, 1995.

V. Guerrero-Rojo. MML, a modelling language with
dynamic selection of methods. In The Knowledge
Acquisition for Knowledge-Based Systems Workshop
(Banff’95), Canada, 1995.

7. Istenes, F. Trichet, G. Camilleri, and A. Fortes.
Modelling Knowledge Structures and Patterns: Cap-
turing World Subsets through Language Structured
Subsets. Research Report IRIT/98-06-R, Institut de
Recherche en Informatique de Toulouse, 1998.

